
1

Final Report

Team 19

Advisers: Goce Trajcevski

Team Members: Ayden Albertsen, Benjamin Hall, TJ Thielen, Ben
McClannahan, Benjamin Riemersma

Team Email: sdmay24-19@iastate.edu

Team Website: https://sdmay24-19.sd.ece.iastate.edu/

mailto:sdmay24-19@iastate.edu
https://sdmay24-19.sd.ece.iastate.edu/

2

Executive Summary

Development Standards & Practices Used
IEEE/ISO/IEC 12207-2017 [1]

● Covers the common framework for the software development life cycle.

IEEE/ISO/IEC 90003-2018 [2]

● supply, development, operation and maintenance of computer software and
related support services.

ISO/IEC 27001 [3]

● Standard dealing with information security and practices that should be
followed.

V. Phoha, "A standard for software documentation," in Computer, vol. 30, no. 10, pp.
97-98, Oct. 1997, doi: 10.1109/2.625327. [4]

Summary of Requirements
● front-end UI that will enable:

○ (i) users to select dataset;
○ (ii) users to enter parameters;
○ (iii) selection of algorithms;
○ (iv) presentation of the results to the end-user;

● back-end that will store the molecular simulation datasets;
● "middleware" that will connect the front-end and back-end;

Applicable Courses from Iowa State University Curriculum
S E 309 - Software Development Practices
COM S 363 - Introduction to Database Management Systems
COM S 327 - Advanced Programming Techniques
COM S 311 - Introduction to the Design and Analysis of Algorithms
COS S 319 - Construction of User Interfaces

3

New Skills/Knowledge acquired that was not taught in courses
● Background knowledge of flocks and convoys
● Inner workings of a convoy detection and related algorithms
● 3D Graphing
● Data Visualization
● Chemical Process Simulators

4

Table of Contents
Executive Summary... 2

Development Standards & Practices Used... 2
Summary of Requirements..2
Applicable Courses from Iowa State University Curriculum..2
New Skills/Knowledge acquired that was not taught in courses..3

Table of Contents..4
Table of Figures & Tables... 6
1 Team...7

1.1 Team Members.. 7
1.2 Required Skill Sets... 7
1.3 Skill Sets covered by the Team... 7
1.4 Project Management Style.. 7
1.5 Project Management Roles... 7

2 Introduction.. 8
2.1 Problem Statement... 8
2.2 Intended Users & Uses..8
2.3 Requirements & Constraints..9
2.4 Engineering Standards...9

3 Project Plan.. 11
3.1 Project Management... 11
3.2 Task Decomposition.. 11
3.3: Project Proposed Milestones, Metrics, and Evaluation Criteria... 12
3.4 Project Timeline/Schedule.. 14
3.5 Risks and Risk Management/Mitigation.. 14
3.6 Personnel Effort Requirements...15
3.7 Other Resource Requirements.. 19

4 Design.. 19
4.1 Design Context..19

4.1.1 Broader Context..19
4.1.2 Prior Work/Solutions... 20
4.1.3 Technical Complexity.. 21

4.2 Design Exploration...22
4.2.1 Design Decisions.. 22

4.2.1.1 Backend... 22
4.2.1.2 Frontend...22
4.2.1.3 Visualization...23

4.3 Final Design...24

5

4.3.1 Overview...24
4.3.2 Detailed Design and Visuals... 25

4.3.2.1 Frontend...26
4.3.2.2 Backend... 26

4.3.3 Functionality..27
4.3.4 Areas of Concern and Development...29

4.4 Technology Considerations..29
4.5 Design Analysis... 30

4.5.1 Security Concerns and Countermeasures..30
5 Testing... 31

5.1 Unit Testing.. 31
5.2 Interface Testing.. 31
5.3 Integration Testing... 31
5.4 System Testing.. 32
5.5 Regression Testing.. 32
5.6 Acceptance Testing..32
5.7 Security Testing... 32
5.8 Results... 32

7 Implementation... 33
7.1 Overview..33
7.2 Evolution of Design..34

8 Conclusion..35
7.1 Review..35
7.2 Value.. 35
7.3 Future Steps.. 35

Appendix 1 - Operation Manual..36
Database... 36
Backend...36
Frontend.. 36

Appendix 2 - Other Considerations...36
Appendix 3 - Code... 37
References... 37

6

Table of Figures & Tables

3 Project Plan 11

Table 3.1 Project Proposed Milestones, Metrics, and Evaluation Criteria 12-13

Figure 3.1 Gantt Chart for Fall 2023 Semester 13

Figure 3.2 Gantt Chart for Spring 2023 Semester 14

Table 3.2 Risks and Risk Management/Mitigation 14-15

Table 3.3 Personnel Effort Requirements 15-19

4 Design 19

Table 4.1 Broader Context Considerations 19-20

Figure 4.1 Use Case Diagram 24

Figure 4.2 System Block Diagram 25

Figure 4.3 Parameter Selection 26

Figure 4.4 Convoy Visualization 27

Figure 4.5 Hydrogen Bond Visualization 27

7

1 Team

1.1 Team Members
● Ayden Albertsen
● Benjamin Hall
● TJ Thielen
● Benjamin Riemersma
● Ben McClannahan

1.2 Required Skill Sets
● Frontend development – Design and implement the UI
● Backend development – Design and implement the API
● Database design and management – Design and implement a database to store

user information
● 3D Data Visualization – Create an interactive way to view the data

1.3 Skill Sets covered by the Team
● Frontend development – Ayden Albertsen, TJ Thielen, Ben McClannahan
● Backend development – Benjamin Hall
● Database management – Ayden Albertsen, Benjamin Hall
● Visualization – Ayden Albertsen, Benjamin Hall

1.4 Project Management Style
Given the team’s experience working on Agile teams, it makes the most sense to
implement this management style on our project. Agile also allows for iterative
development which is great for developing a unique interface for customers that don’t
have strict requirements.

1.5 Project Management Roles
Client/Advisor Contact & Communication – Benjamin Riemersma
Git Management Leader – Ayden Albertsen
Frontend Leader – Ayden Albertsen
Backend Leader – Benjamin Hall

8

2 Introduction

2.1 Problem Statement
To avoid high cost and to provide safety during exploratory stages, most

manufacturers of drugs run simulations of molecular interactions and analyze the
movements of atoms (in the context of multiple molecules that they belong to). The
main purpose is to detect whether certain events of interest occur – which, in turn,
would mean that certain properties of the drug under development are satisfied (or not).
For this project's purposes, our event of interest is the formation of a Hydrogen Bond
(HB) during the evolution of the chemical compound, and its persistence for a set
amount of time. Our project aims to develop a system that will allow users to analyze
the simulation datasets and: (1) detect the occurrence of such long-lasting HBs; (2)
provide a detailed report to the user; (3) provide a visual representation of the persistent
HBs, if they occur within the data set.

2.2 Intended Users & Uses
There are several classes of stakeholders that could potentially benefit from the results
of this project.

1. Chemical scientists and engineers:
● How will they use our project?

● Easily filter received data and visualize results in a way that is useful to
chemists.

● Display easy to understand information about properties regarding
reactions of chemical compounds to peers and others.

● What do they gain from our project?
● Speeds up the process of drug development.
● Reduces time and effort on evaluating the data our application does

for them.
2. Pharmaceutical Investors and Businesses:

● How will they use our project?
● Easy, high-level tool to understand drug interactions without needing to

understand the details.
● What do they gain from our program?

● Reduce the risks when investing in development for potential drugs.
3. Educators:

● How will they use our project?

9

● Safe environment for demonstrating properties of chemical reactions
to students.

2.3 Requirements & Constraints
1. Functional

a. Take input from the user regarding data set, algorithm, parameters.
Parameters will change depending on the algorithm selected. The system
needs to ensure that the correct parameters are provided.

b. Output the results of the algorithm so that the user can clearly see the
clusters that persist over time.

c. System needs to scale well with multiple users as well as larger datasets.
d. Computations need to be done on a server rather than the client’s machine

due to high intensity computations.
e. Validation needs to be done on user input parameters to ensure that the

system does not crash.
f. Runtime of the algorithms needs to be reasonably efficient (Algorithms

provided)
g. Access to data should be fast and reliable.

2. Environmental
a. System should not make excessive/unnecessary computations and

should be power efficient.
3. Economic

a. System should not make excessive/unnecessary computations and
should be power efficient and should be extensible so that other datasets
can be easily incorporated, and other criteria be added.

b. Guarantees of quality of output so that drug companies can clearly see the
results as real-world testing involves high costs and risks.

4. User Interface
a. UI needs to provide ease of navigation.
b. It should be intuitive to understand the (purpose and use of) different

components.
c. It should provide input validation.

2.4 Engineering Standards
IEEE/ISO/IEC 12207-2017 [1]

10

● Covers the common framework for the software development life cycle.

IEEE/ISO/IEC 90003-2018 [2]

● supply, development, operation and maintenance of computer software and
related support services.

ISO/IEC 27001 [3]

● Standard dealing with information security and practices that should be
followed.

V. Phoha, "A standard for software documentation," in Computer, vol. 30, no. 10, pp.
97-98, Oct. 1997, doi: 10.1109/2.625327. [4]

11

3 Project Plan

3.1 Project Management
Our group will be using an agile project management style. Our tasks/subtasks will be
broken down into 2 week long sprints (Roughly 8 sprints). The goal of our project is to
produce a user friendly and easy to use product which requires constant
communication, flexibility, and adaptability. By choosing the agile methodology we can
iteratively develop each of our subtasks and get meaningful feedback after each sprint
which is crucial when developing a customer focused product.

Our progress and tasks will mainly be tracked using GitLab issues and milestones.
GitLab allows issues to be assigned to specific group members and have weights
assigned to them ensuring an even workload distribution for our group members. Daily
standups and communication will mainly be done through Discord.

3.2 Task Decomposition
For our project we derived 5 major tasks that need to be completed in order to fulfill the
functional requirements that we defined in the previous section. From the above tasks
we have defined more specific subtasks that will need to be completed in order to fully
complete the tasks.
Task 1: Database

1. Pick a database to store npz datasets (Could potentially use file system)
2. Pick relational database to store user information and results
3. Determine tables needed for relational database
4. Create ER diagram for relational database
5. Translate ER diagram to SQL statements
6. Set up/deploy database server

Task 2: UI
1. Design Prototype for UI (Figma)
2. Choose UI framework (React, Angular)
3. Determine list of detection algorithms and required parameters
4. Project Setup
5. Select Database/Algorithm/Parameters Page (Functional Requirement 1)
6. Import Dataset Page
7. Login/Create user Functionality
8. Job Status Page
9. View Results/Select Convoy to Visualize Page

12

10.Connect UI to backend (Axios)
Task 3: Server/API

1. Choose Backend Framework (Flask, Spring)
2. Project Setup
3. Obtain all algorithms being used for the project
4. Endpoint to take in job parameters and start a convoy detection job
5. Import Dataset Endpoint
6. User Login/Creation Endpoints
7. Retrieve Job Status Endpoint
8. Retrieve results of convoy detection algorithm endpoint

Task 4: Convoy Visualization
1. Discuss specific visualization needs with client
2. Choose visualization framework (Plotly, VMD as failsafe)
3. Create endpoint that produces a 3D visualization of a convoy
4. Send convoy visualization to frontend
5. Display an interactive visualization to the user in the UI

Task 5: Testing
1. Ensure that all components of the project can communicate with each other and

produce the desired output
2. Ensure that all component unit tests are correct.
3. Ensure that all functional requirements are met.

3.3: Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone Metrics

Relational Database is designed,
implemented, and deployed (Task 1)

Database captures/maintains the
required data for the project.

Database response time: Less than 10
milliseconds for 95% of queries.

Transaction throughput: Handle up to 10
concurrent users without performance
degradation.

Method to store and retrieve element
datasets is implemented (Task 1)

Efficiency: Large datasets are stored
efficiently with a compression ratio of at
least 30%

Data retrieval should be reasonably fast,

13

and dataset should take no longer than 1
minute to be loaded into the computation
system

Login/Register functions are
implemented (Task 2)

Prospective users are able to register new
accounts and login with them.

Security: all users should have their
passwords and data encrypted.

Dataset/Algorithm/Parameter selection is
implemented (Task 2)

Ensures that all of functional requirement
1 is met. Users can easily select the
algorithm and parameters for convoy
detection in an intuitive and easy to use
way

Upload Dataset Functionality (Task
2/Task 3)

System should be able to have datasets
as large as 5GB.

Users should be able to drag and drop
datasets to upload them to the server.

Upload speed should only be affected by
the client's internet speed.

UI component is able to communicate
with backend (Task 2)

Only authenticated users should be able
to interact with backend Response time
should be less than 100ms

Convoy Detection Algorithms are
implemented (Task 3)

Convoy algorithm runtimes should be the
same as described in journal articles.

Users should have a way of seeing the
status of the algorithms

All systems are able to work and
communicate with each other (Task 5)

Latency between communicating from
one system to another should be less
than 100ms

Proper https encryption standards are
used when communicating over the
internet

Table 3.1 Project Proposed Milestones, Metrics, and Evaluation Criteria

14

3.4 Project Timeline/Schedule

Figure 3.1 Gantt Chart for Fall 2023 Semester

Figure 3.2 Gantt Chart for Spring 2023 Semester

3.5 Risks and Risk Management/Mitigation

Task Risk Mitigation Probability

Task 1: Database Data becomes
compromised.

Follow ISO/IEC
27001 standards

0.1

Task 1: Database Data is deleted. Keep a backup of
the data so that it
can’t be deleted or
become unavailable

0.1

15

Task 2: UI Framework does
not meet our
requirements

Define a backup
frontend framework
in case our first
choice does not
work

0.2

Task 2: UI Unable to
communicate with
backend

Fallback to a
different http
request library

0.1

Task 4:
Visualization

Visualization
Framework unable
to handle the
amount of data

Reduce resolution
of data being
displayed, only
show some time
slices, render
elements as simple
dots.

0.8

Task 4:
Visualization

Visualization API
cannot handle
several connections
and requests

Implement queue
system for
visualization
requests

0.3

Table 3.2 Risks and Risk Management/Mitigation

3.6 Personnel Effort Requirements

Task Setup/Research
Hours

Implementation
Hours

Explanation

1a. Pick a database
to store .npz
datasets (Could
potentially use file
system)

3 1 There may only be
a few options
available

1b. Pick relational
database to store
user information
and results

2 0 Will mostly likely
use MySQL but
need to ensure that
it will meet our
requirements.

1c. Determine
tables needed for
relational database

5 0 Will take some time
to figure out what
tables are needed

16

for the project

1d. Create ER
diagram for
relational database

2 4 Some setup time to
learn Lucid Charts
or some other
diagram tool

1e. Translate ER
diagram to SQL
statements

2 4 Just some research
and testing for
simple SQL
statements.

1f. Set up/deploy
database server

1 4 Getting access to
Iowa State servers
and setting up the
database on it.

2a. Design
Prototype for UI
(Figma)

2 10 Learn Figma if the
team has not
learned it yet and
create program
flow and design
themes

2b. Choose UI
framework (React,
Javascript)

1 0 Decide on which
framework would
be best suited for
our team.

2c. Determine list
of detection
algorithms and
required
parameters

2 0 Research the
algorithm to
determine all the
parameters needed
from the user.

2d. Project Setup 0 1

2e. Select
Dataset/Algorithm/
Parameters Page
(Functional
Requirement 1)

6 12 Might have to pull
available datasets
and algorithms
from the backend
for this.

2f. Import Dataset 6 12 Developing an

17

Page upload function
with security
concerns and
writing tests in
conjunction with
the backend to test
functionality.

2g. Login/Create
user Functionality

6 12 Developing a user
account system
with security
concerns in mind.
Writing tests to
confirm security
and functionality.

2h. Job Status
Page

8 10

2i. View
Results/Select
Convoy to Visualize
Page

12 16 Might take some
research with the
visualization aspect
as the output is an
HTML file.

2j. Connect UI to
backend (Axios)

12 24 Integration with
backend for user
and dataset
storage. Will need
to test login,
register, upload,
and retrieval
functions.

3a. Choose
Backend
Framework (Flask,
Spring)

2 0 Research what
framework meets
our requirements.

3b. Project Setup 1 0 Setting up the
project in GitLab.

3c. Obtain all
algorithms being
used for the project

1 0 Receive all
algorithms from
client.

18

3d. Endpoint to take
in job parameters
and start a convoy
detection job

9 19 Will also have to
develop or research
queue framework
for jobs.

3e. Import Dataset
Endpoint

9 18 Requires
integration with the
user database and
API.

3f. User
Login/Creation
Endpoints

9 19 Integration of User
API and database.

3g. Retrieve Job
Status Endpoint

6 12 Research the best
way to implement
and retrieve job
status.

3h. Retrieve results
of convoy detection
algorithm endpoint

4 8 Requires
integration testing
from visualization
API and frontend.

4a. Discuss specific
visualization needs
with client

4 0 Meeting with client.

4b. Choose
visualization
framework (Plotly,
VMD as failsafe)

4 0 Research and
decide which
framework fits our
client’s needs.

4c. Create endpoint
that produces a 3D
visualization of a
convoy

9 18 Need to optimize
and refine usage of
visualization library.

4d. Send convoy
visualization to
Frontend

2 4 Need to research
ways to optimally
send data securely
and efficiently.

4f. Display an 9 18 Researching and

19

interactive
visualization to the
user in the UI

designing an
elegant way to
display the results
of the algorithm

5a. Ensure that all
components of the
project are able to
communicate with
each other and
produce the desired
output

9 18 Writing and running
integration tests.

5b. Ensure that all
functional
requirements are
met

9 18 Comprehensive
testing and client
feedback.

Table 3.3 Personnel Effort Requirements

3.7 Other Resource Requirements
Algorithms and datasets will need to be obtained from the clients. We will also need to
obtain a server to host our various project systems.

4 Design

4.1 Design Context

4.1.1 Broader Context
Our project is designed to be used as an aid for drug manufacturers to detect how
certain substrates and drug molecules may interact over time as well as detect events
of interest such as convoys. Because of this, both chemists and non-technical industry
professionals need to be able to use and understand our software.

Area Description Examples

Public Health,
Safety, and
Welfare

How does your project affect the
general well-being of various
stakeholder groups? These
groups may be direct users or

Aid in providing a
comprehensive tool to automate
convoy detection
and allow chemists to develop

20

may be indirectly affected (e.g.,
solution is implemented in their
communities)

potentially lifesaving drugs
faster.

Global, Cultural,
and Social

How well does your project
reflect the values, practices, and
aims of the cultural groups it
affects? Groups may include but
are not limited to specific
communities, nations,
professions, workplaces, and
ethnic cultures.

Chemists’ workload will be
lightened by removing the
tedious repetitive task of
detecting convoys by hand
enabling a more effective
exchange of findings and
processes.

Environment What environmental impact
might your project have? This
can include indirect effects, such
as deforestation or
unsustainable practices related
to materials manufacture or
procurement.

The servers that run the convoy
detection algorithms will use
energy, however, our system will
enable more efficient separation
of potential reactions among
atoms without sacrificing the
effectiveness.

Economic What economic impact might
your project have? This can
include the financial viability of
your product within your team
or company, cost to consumers,
or broader
economic effects on
communities, markets,
nations, and other groups.

Drug research can be extremely
costly and have risks involved.
Our
system will mitigate some of
these
costs by using simulated data
and
detecting convoys with efficient
algorithms. This can make for
faster
drug research as well as quicker
time to market.

Table 4.1 Broader Context Considerations

Our design attempts to address the needs of the client by creating two fundamental
systems; (a) a frontend that provides the UI/UX to the user as well as display the
rendering of the convoy displayed to the user, and (b) a backend that handles data
access, computation, and visualization rendering.

4.1.2 Prior Work/Solutions
There are no comprehensive systems that provide convoy detection and visualization
using a cohesive user interface. There has been prior work done with studying

21

molecular flocks [9] and convoys [8]. The downside of these two studies is that they
neglect to consider tolerance gaps in convoy detection which is still interesting to drug
manufacturers. There also exists software that can visualize molecular trajectories but
none that work in conjunction with a convoy detection system. 

4.1.3 Technical Complexity
The design consists of multiple components/subsystems that each utilize distinct
scientific, mathematical, or engineering principles.

1. Frontend
a. Authentication/Authorization

i. Users need to view only data assigned to them.
ii. Users need to log in to access their data

b. UI/UX
i. Database, algorithm, parameter selection
ii. View Job Status
iii. View Results

c. Visualization of convoys
i. Interactive
ii. 3D

2. Backend
a. Data Access and Storage

i. Upload and retrieve stored datasets in the database
ii. Load datasets into algorithm parameters

b. Job Broker
i. Start job on API request and return Job Identifier.
ii. Portion out computer resources for algorithms.
iii. Retrieve and return status of Job from an identifier.

c. Convoy Computation/Processing
i. Load large datasets into algorithm
ii. Run a computationally difficult algorithm while several requests are

going on
iii. Return processed data to visualization

d. Visualization Rendering
i. Take in the processed data and render the dataset to an HTML

format for easy and dynamic viewing by the user
ii. Reduce size for output
iii. Reduce resolution of data

https://dl.acm.org/doi/10.1145/1183471.1183479
https://dl.acm.org/doi/10.14778/1453856.1453971

22

4.2 Design Exploration

4.2.1 Design Decisions

4.2.1.1 Backend

Defined Criteria:
● Needs to be able to work with the data and algorithms provided by the client.
● Needs to be able to scale with multiple users.
● Needs authentication support.
● Needs to be able to communicate with frontend using HTTP
● Support for rendering visualizations

Given the criteria we narrowed down our options to two different frameworks:
● Java Spring

○ Group Familiarity/Experience
○ Fast
○ Authentication Support
○ Testing Support / Dependency Injection
○ Good Documentation
○ Bloated Codebase
○ Not compatible with given datasets

● Python Flask
○ Older framework
○ Little group experience
○ Compatible with given datasets and algorithms
○ Performant
○ Lightweight
○ Can work with many visualization and job queue frameworks.

After analysis of our two options, we have decided to go with Flask to create our
backend. Its compatibility with the given datasets being its biggest draw. It will also give
the group an opportunity to learn a new framework and for some of us a new language.
Though this will come at the cost of added time as members may have to do more
initial research before completing their tasks. Python also has a larger number of
graphing/visualization framework available which also led us to choose Flask.

4.2.1.2 Frontend

Defined Criteria:
● Needs to be able to give a good user experience.

23

● Interface with our visualization framework to display information

Given the criteria we narrowed down our options to two different frameworks:
● React

○ Most popular frontend framework
○ Group Familiarity
○ Flexible
○ Larger community
○ Larger file size

● Vue
○ Second most popular frontend framework
○ Smaller file sizes
○ Better for simplicity

After analysis of our two options, we have decided to go with React to create our
frontend. Of all our members, we have the most experience with React. Additionally, it
has great community support as it is the most popular frontend framework that
developers use.

4.2.1.3 Visualization

Defined Criteria:
● Display convoys through various time periods
● Output multiple convoys
● Highlight hydrogen bonds within convoys.
● Output results to our frontend
● Fast and efficient

Given the criteria we narrowed down our options to two different frameworks:
● VMD

○ External application
○ Unknown API
○ Suggested by client
○ Built for modeling molecules
○ Built-in scripting
○ Lacks interactivity

● Plotly
○ Python library
○ Interactive
○ Flexible
○ May lack complexity and tooling for molecule modeling.

24

After analysis of our two options, we have decided to go with Plotly to create our
visualization framework. We concluded that VMD would require too much work to
interact with our frontend and it would be better to use a more flexible tool like Plotly
over one tool designed for molecule modeling. Plotly being a Python library also allows
for simplicity without a backend API being developed in Python as well.

4.3 Final Design

4.3.1 Overview
This project can be broken down into two main parts: the frontend, and the

backend. The frontend will encompass parameter selection, the API service, the Results,
and the Visualization. The backend will contain the Flask API, the Convoy Job Queue,
the Visualization Render Queue, and communicate with the database.

The process will start on the frontend, where a user is able to upload a dataset
for the convoy detection algorithms to run on. This will go through the API Service to
communicate with the Flask API, which will then upload that data to the database. After
this is done, the user can use the Parameter Selection component to determine the
specifics of how the convoy detection algorithm will work. It will pass that information
to the API service, which will communicate with the Flask API. The Flask API will send
this information to the Convoy Job Queue. This will execute the algorithm needed to
detect convoys and return the results to the API. Next, it will send these results to the
Visualization Render Queue. This will create a visualization using Plotly to display
information about the convoys. Finally, the Flask API will send back this visualization to
the API Service, which will send this information to the frontend for the user to view.

25

Figure 4.1 Use Case Diagram

4.3.2 Detailed Design and Visuals
Based on our use case model (cf. Figure 4.1), here is our diagram of our system and
subsystems:

26

Figure 4.2 System Block Diagram

4.3.2.1 Frontend

● NextJS is a web development framework for providing React-based web
applications with server-side rendering and static website generation. This
provides us with better development, performance, and scalability.

● Admin Page provides an interface for the user to interact with datasets,
companies, and jobs.

● New Job provides a page for the user to specify parameters for a new job, and
start them.

● Visualize Job provides a page for the user to visualize the processed data from
the jobs that they and their company have created.

● Upload Dataset provides a page to upload new datasets for use in their own and
their company’s jobs.

4.3.2.2 Backend

● Flask [6] provides a stable but updated library for developing and hosting an API
through Python.

● Celery [10] is an asynchronous job queue library that will be used for starting and
retrieving job status. This tool will provide the most flexible and fast response to

27

users. It provides interactivity with Flask which makes it perfect for this use case.
It will allow for the client to request new jobs, their status, and their results.

● Redis [11] is an in-memory database which can be used as a broker for job
statuses for Celery.

● Docker [12] allows for quick deployment of the multiple backend scripts like
Flask and Redis, making it a more deployable package.

● MySQL [13] provides a traditional database structure perfect for storing user
data, the stored data sets uploaded by the user, and caching results of jobs for
the long-term.

● Processing Algorithms were provided by the client for use in our backend design.
● Plotly [7] provides an expansive visualization library which can output a HTML

rendering of the data after processing, which can be returned by the API.

4.3.3 Functionality

This design is intended to operate in the real world by first allowing chemists who need
to view the formation of convoys and hydrogen bonds between molecules to upload
their data to the database. Next, they can select the necessary parameters and
algorithm to execute(figure 4.3). Both this and the visualization of the results will be
done remotely and sent back to the frontend for the users to view.

Figure 4.3 Parameter Selection

28

Figure 4.4 Convoy Visualization

Figure 4.5 Hydrogen Bond Visualization

29

4.3.4 Areas of Concern and Development
We had bi-weekly discussions with our client to ensure that our project was meeting all
the requirements and never strayed from the requirements. For example, one of the
biggest needs expressed was the ability to visualize hydrogen bond groups over a
period of time. We detailed those decisions in Section 4.2.1 of this document. Just like
with that decision, we went through the creation of evaluation criteria for each decision,
allowing us to act confidently and consistently in our decisions. We also went over our
decisions and why we made them with our client to ensure they felt that the project was
meeting their needs.

While we considered different frameworks and technologies to use, we had concerns
whether our decided framework would be sufficient for the client's needs. We continued
to communicate with our client in order to ensure that our design met all their
requirements as development progressed.

4.4 Technology Considerations
When making the design decision on the backend language, we analyzed the strengths
and weaknesses of both Java Spring and Python Flask. We ended up landing on Flask
due to its good performance, light weight, and ability to work with many visualizations
and asynchronous jobs. There were some disadvantages including being an older
framework, and a lack of Flask experience within our group. We could have gone for
Java Spring, which would have been easier to get started with due to more group
experience, however we determined the advantages of Flask outweighed those of
Spring.

Another decision that was made was with our visualization technique. It was initially
suggested that we try to use VMD, but after further research we found a much better
solution – plot.ly. Plot.ly is a python library that allows you to create a visualization
similar to what is possible with VMD, however it is lighter and works really well with our
current design, so we opted to choose plot.ly.

Finally, we had the opportunity to choose either React or Vue for the frontend
framework. They had very similar strengths and weaknesses but given that our group
has more experience in React, we decided to use React. Additionally, Next.js was
chosen to provide improved page transition functionality on top of the methods
provided by React. Next provided a clean way to implement URL path arguments.

30

4.5 Design Analysis
The tasks on this project were highly effective at directing the work to be done. The
setup and research hours were effective at predicting the expected time commitment
for each work item. In particular the 2i View Results/Select Convoy to Visualize Page
and 2j. Connect UI to backend were some very time intensive tasks with some design
changes to be implemented. That design change being the adoption of the React-Plotly
module.

While the CMC Detection algorithm was given to us at the beginning, that did not make
the visualization process simple. We did not know how much screen space was
available and the proper coloring of convoys and contexts was not apparent without
client interaction, and some trial and error aka testing.

8 2-week sprints were accurate. There were concrete tasks which needed to be
completed and they were distributed amongst team members. Communication was
highly encouraged in order to get advancements completed.

4.5.1 Security Concerns and Countermeasures
Throughout all points in our application, we ensured that user-provided data had been
sanitized and validated. We also ensured that all libraries used in our project were
reputable and maintained consistently. All user credentials were properly handled with
proper hashing, salting, and peppering.

31

5 Testing
In this section we present details of our test methodology that was used throughout the
development of the project. We note that the functional and nonfunctional requirements
were described in Section 2.3 and they were translated into respective system
components in Section 4.3. We will refer to Figure 4.1 and Figure 4.2 of Section 4 when
describing the envisioned testing.

5.1 Unit Testing
Currently Selenium is used to test frontend login, account security, web page transitions,
data set upload, and other frontend functionality. This is a quick tool which allows for
automatic testing of client-side components, which can be updated manually with the
addition of frontend features.

For the backend, PyTest is used to test basic functionality of python functions. This is a
quick tool which allows for automated testing of server-side components, and can be
updated manually with the addition of backend features.

5.2 Interface Testing
With only 7 web pages, user interface testing was conducted manually. Problems with
the UI are more qualitative and would be discussed between the client and developers.
Backend HTTP API Tests were completed with the Postman API testing application.
This application keeps many tools for testing endpoints. Postman HTTP Requests were
shared between developers to keep Request/Responses transparent and accessible.

5.3 Integration Testing
There are many integration paths which require testing. User authentication and data
retrieval were simpler to test just through observation. However this project is stateful in
that the data in the Redis and MySQL servers along with the local files dictate how the
project runs. Each and every state was not tested. Cypress was a promising tool to test
the frontend with multiple data states. But testing of our code with multiple data states
was done manually via observation and manipulation of backend files and database
records.

32

5.4 System Testing
The core processes of the project involve the visualization of large groups of atoms with
convoys and the browser retrieval and rendering of these figures. Visualization of the
groups of atoms with Plotly’s scatterplot 3d was proven in November. Adjustments of
the complete figure were established through client interaction with Hasan Anowar MD.
Client-side testing of the visualization of Plotly figures is pretty binary, the figure shows,
or it doesn’t. This can be tested via Selenium like other unit tests.

5.5 Regression Testing
Gitlab provides runners which organize and execute our source code on the VM for the
main branch. This preliminary tool provides responsive information on the total code
base based on the runner’s success. This is an essential, if rudimentary test, that was
very beneficial for the acceleration of development.

5.6 Acceptance Testing
For meeting functional and nonfunctional requirements, we directly contacted and
worked with our client. The acceptance of the project was decided based on criteria
such as: intuitiveness of the UI, accuracy of the implementation of algorithms, and the
accuracy of the visualization. We also involved the client in different stages of
integration testing.

5.7 Security Testing
Data security testing for this project was a stretch goal. At this time the website is
hosted on ISU’s network. Passwords are encrypted on the database and credentials are
required to use the website. Penetration testing and hardening would be beneficial for
future work items. Currently only password verification is tested as a side effect of unit
testing.

5.8 Results
Our unit tests and regressions tests ran every time we updated the system to ensure
continued functionality of the project. Our client has approved of the state of and
appearance of our project at this time. All major bugs discovered during testing have
been eliminated. For example, we found issues with the synchronization between the
MySQL database and the Redis database. All tests currently perform to a satisfactory
level.

33

7 Implementation

7.1 Overview
Our implementation process was to start by adding the core functionality to our project
and gradually implement more adjacent features and functionalities to create our
minimum viable product and expand to create a more cohesive and comprehensive
project. This allowed us to refine our most complex and important task first to nail the
product’s core functionality. Our first core features included creating and managing
convoy detection jobs, creating and managing hydrogen bond detection jobs, and
visualizing said jobs. Less important features include the management of companies
and datasets. This process allowed us to work in an agile methodology with
simultaneous development.

There were several areas of development that contributed to our final project. The first
area was the acquisition and setup of a project infrastructure. This includes the server
used in the project which hosted our docker containers, development operations
(DevOps), and our database. The first task towards implementing our infrastructure was
to acquire a server with sufficient resources from the Electronics and Technology Group
(ETG) at Iowa State University. Our team acquired a server that was able to host our
Dockered Flask application, our MySQL database, and our CI/CD pipeline for
Development Operations. Docker was responsible for deploying our backend tools like
Flask, Celery, and Redis. The MySQL database was responsible for storing user data,
datasets, and cached results from user jobs. We initially faced challenges on obtaining
a server with enough resources as the algorithms our client provided us were resource
intensive.

The next area of development was the implementation of the client-provided algorithms
towards our Flask API and Celery library. The implementation started out as a 1:1 copy
of the provided algorithm into Celery, however this quickly caused issues that needed
resolving. Other algorithms required data that was processed in the middle of the
algorithm and had no way to export it. We later decided to divide the algorithm into the
smallest basic tasks and named those “Jobs” that Celery would queue for our back end
to process. With this, users can begin new jobs, query their status, and obtain their end
result.

Another area of development was the implementation of visualization. This was
implemented as a simple endpoint for the API in which users could request specific
visualizations (convoys, hydrogen bonds, or the convoys in context). The visualization

34

was implemented with the Plot.ly library, using a mix of default configuration and
custom configurations for the Hydrogen Bond visualization. With this implemented, the
frontend is able to request the visualization in which it will embed the returned HTML
visualization from the backend into the UI.

The last area of development was the implementation of companies and datasets. This
was implemented with JWT authentication and retrieving information from the MySQL
database. Users are able to upload datasets with selectable permissions for the public,
company, and themselves. They can restrict read and write permissions for datasets
and jobs within this.

7.2 Evolution of Design
In this section we note the changes that our project encountered during implementation
and why they were needed.

Our original design planned to utilize the React framework for our frontend. After our
initial testing, we realized that React was not performant enough for the project
requirements. We decided that NextJS would better meet our requirements as it had a
better development environment and provided better performance.

Another evolution in our project was the interaction between our two databases, Redis
and MySQL. Initially, the jobs from celery would stay only in the Redis database.
However, Celery and Redis do not allow for querying the status of jobs in progress. This
means we had to create an additional table in MySQL to store intermediary data on
these jobs. Ultimately, we reconfigured Celery to use MySQL as the results database and
only use Redis for the broker database.

35

8 Conclusion

7.1 Review
This website should be a convenient tool for chemists and drug researchers to
effectively visualize the mechanics of computed chemicals under study. The project has
a professional and reactive design which instills confidence from users. Clients should
be able to utilize this project as they need as the virtual machine will be kept online
running after this semester. All of the core software technologies(Flask Framework,
React Framework, Celery, Redis, and MySQL) declared to be used by the design
document were used in their intended manner within this project. The Gantt chart was a
very useful guide even if it wasn’t able to be followed perfectly.

7.2 Value
In this use case, chemists should be able to visit the website on lightweight mobile
devices such as tablets and laptops and see a visualization of which chemicals hold
proximity to each other. This way chemists with computers that have no graphical
hardware, or those with operating systems which do not support VMD can view these
complicated processes. Molecular motion at this scale is rarely seen and hopefully this
website can make this more well known.

7.3 Future Steps
There are a couple of directions this project could grow in. More customizability in
algorithm selection, better compression of visualizations for faster intractability with
visualizations on the front end, a public collection of NumPy frame files, even
contributing to the Plotly project could be a benefit. There is not one specific direction,
but the broad categories for future development of this project are: improving
customizability, increasing documentation and education on these processes,
improving accessibility, increasing security, and automating server maintenance.

36

Appendix 1 - Operation Manual
The Remote Repository which holds our source code can be found here:

https://git.ece.iastate.edu/sd/sdmay24-19
To run the project, follow the following guide:

On a Windows, Linux, or MacOS machine ensure the following tools are installed:
Docker Engine, Docker Compose, Node.js 20.11.1, Python 3.10, and MySQL Server 8.0
CE.

We recommend opening up sdmay24-19 in an IDE, for these instructions we will be
using VScode. MySQL is often most comfortably used with MySQL Workbench.

Database
1. With MySQL Workbench, open and execute the SQL file located at

../sql/table_init.sql

Backend
1. Open up one terminal and navigate to the directory, /backend
2. Run the following command:

docker-compose up -d --build.
This should create 3 Docker Images and from them 3 containers.

Frontend
1. Open up a concurrent terminal and change directory to ../frontend/convoy
2. Run the following command:

npm run init
3. Access the web application at https://localhost:3000/

Appendix 2 - Other Considerations
Team 33 had this exact same project one year earlier. Our project set out to succeed at
some tasks which the other team’s project had struggled with. Those being a single
responsive UI, and fast download times for large datasets. They also struggled to
implement the hydrogen bond detection, which was an emphasis for our
implementation.

https://git.ece.iastate.edu/sd/sdmay24-19

37

Appendix 3 - Code
This project is predominantly broken down into 2 servers and 2 databases: Node.js and
Flask, MySQL and Redis.

Node, a well supported JavaScript compiler, hosts the browser web pages. All of these
are organized by the React Framework. Additional core packages are Next.js, Tailwind
CSS and Plotly. Next.js handles web page transitions and URL organization. Tailwind
CSS provides styling for web pages from within JSX files. Plotly is the collection of JS
modules responsible for visualizing contexts, convoys, and bounding boxes.

Flask, a Python 3 Web Server framework. Crucial to the implementation of the backend
API is the use of the Celery, multithreaded task queue, in conjunction with the Redis,
in-memory key-value DBMS. Redis acts as the task broker for Celery, and all of these are
seamlessly integrated into the total backend.

The MySQL RDBMS is used for secure management of users, and company account
information.

References
[1] IEEE SA, “IEEE Standards Association,” IEEE Standards Association.
https://standards.ieee.org/ieee/12207/5672/

[2] IEEE SA, “IEEE Standards Association,” IEEE Standards Association.
https://standards.ieee.org/ieee/90003/7197/

[3] “ISO/IEC 27001:2022,” ISO, Feb. 02, 2023. https://www.iso.org/standard/27001

[4] “A standard for software documentation,” IEEE Journals & Magazine | IEEE Xplore,
Oct. 01, 1997. https://ieeexplore.ieee.org/document/625327

[5] “React.” https://react.dev/

[6] “Welcome to Flask — Flask Documentation (3.0.X).”
https://flask.palletsprojects.com/en/3.0.x/

[7] “Plotly.” https://plotly.com/python/

[8] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of convoys in
trajectory databases,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp.
1068–1080, Aug. 2008, doi: 10.14778/1453856.1453971.

38

[9] J. Gudmundsson and M. Van Kreveld, “Computing longest duration flocks in
trajectory data,” Nov. 2006, doi: 10.1145/1183471.1183479.

[10] “Introduction to Celery — Celery 5.3.6 documentation.”
https://docs.celeryq.dev/en/stable/getting-started/introduction.html

[11] “Redis,” Redis. https://redis.io/

[12] “Docker: Accelerated Container Application Development,” Docker, Oct. 18, 2023.
https://www.docker.com/

[13] “MySQL.” https://www.mysql.com/

