Convoys in Atomic and Molecular Trajectories

Ayden Albertsen, Benjamin Hall, Ben McClannahan, Benjamin Riemersma, Timothy Thielen Client/Advisor - Goce Trajcevski

Introduction

Problem

Drug manufacturers run molecular simulations to detect events of interest; we are looking for the formation of a hydrogen bond that persists over a certain period of time. Doing this manually takes extensive time and effort.

Solution

An application that will take the simulation data as an input and output the convoys and hydrogen bonds in a visually comprehensive way.

Intended Users & Usage

Chemical Engineers Easily filter data & visualize results

Pharmaceutical Investors Understand drug interactions without complex understanding of details

Educators

Use a safe environment to demonstrate chemical reactions.

Design Requirements

	•		
HIN	CTI	n	

Economic

User Interface

Take user input Output results Scales well with users & datasets Server-side computation No unnecessary computations Guarantee quality output Ease of navigation Intuitive to understand Provide input validation

Design Overview

Technical Details

Technologies Used

Next.JS Frontend framework

Flask Python-based API framework

Celery Asynchronous task queue library

Redis In-memory database for Celery

MySQL Relational dataase for persistent data

Plotly Python-based data visualization library

Docker Dynamic deployment of backend

Visualizations

job dashboard

hydrogen bond visualization

Testing

Unit Testing

PyTest Backend Tests Selenium Frontend Test

Other Testing

Performed manual reviews for accuracy and completion with client and advisor

Standards IEEE/ISO/IEC 12207-2017